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Some aspects of the interplay between approximation properties of analytic
functions and the smoothness of its boundary values are discussed. One main result
describes the equivalence of a special q-modulus of continuity and an intrinsic
K-functional. Further, a generalization of a theorem due to G. H. Hardy and
J. E. Littlewood (1932, Math. Z. 34, 403–439) on the growth of fractional deriva-
tives is deduced with the help of this K-functional. © 2002 Elsevier Science (USA)

1. INTRODUCTION

In this paper we discuss some approximation properties of analytic
functions on the unit disc D, f(z) from Hp(D), p > 0, with finite quasi-
norm

||f||Hp :=1 sup
0 < r < 1

1
2p

F
2p

0
|f(re ij)|p dj2

1
p

, 0 < p <..

In the sequel we will simply write Hp for this space. It is well known that a
function f ¥Hp, p > 0, has a nontangential limit f(e it) from Lp(T) for



almost all t ¥ [0, 2p). Here we denote by Lp(T) the measurable, 2p-periodic
functions with finite quasi-norm

||f||Lp(T) — ||f||p :=1
1
2p

F
2p

0
|f(e ij)|p dj2

1
p

.

Then, cf. [19], there holds ||f||Hp=||f||p.
We consider the following two Problems:

(a) the equivalence of a special q-modulus of continuity, based on
divided differences, and a ‘‘natural’’ K-functional on Hp,

(b) the characterization of the growth of fractional derivatives of
analytic functions on D by the smoothness of the boundary values.

Concerning Problem (a) we follow Tamrazov [25] and define the
q-modulus of continuity w̃m(d, f)p via divided differences. In our situation
these are based on an equidistant partition of the unit circle. The
q-modulus has the important property that w̃m(d, Pm−1)p=0 for all alge-
braic polynomials of order m−1 (in contrast to the classical modulus of
continuity which does not annihilate trigonometric polynomials).

The K-functional in question is given by

Km(d, f)p := inf
g(m) ¥Hp

{||f−g||Hp+d ||g (m)||Hp}. (1.1)

Since g (m)(z)=(d/dz)m g(z) is the standard m-th derivative, this definition
of a K-functional on Hp is intrinsic. One can interpret this K-functional as
a measure of the approximation of f by an analytic function g with simul-
taneous control (in norm) of the derivatives of g. This point of view is
reflected by the proof of the equivalence between Km(d, f)p and w̃m(d, f)p
which follows the pattern of a proof developed by Oswald [17] in a related
situation. Essential use is made of an inequality of Bernstein–Nikol’skii–
Stechkin type and of an inequality of Jackson type, both involving the
q-modulus of continuity.

Concerning Problem (b) we recall the following classical result of Hardy
and Littlewood [13] on analytic functions on D.

Let f(z)=; anzn, fb(z)=; (C(n+1)/C(n+1−b)) anzn−b. Then
f(z) ¥ Lip(a, p), −1+a < b < a, implies fb(z) ¥ Lip(a−b, p).

This was generalized by Zygmund [28], Brudnyi and Gopengauz [5],
Storozenko [23], and others. In view of the above mentioned equivalence,
their results may be summarized as

||f (m)(re it)||p [ Cm, p(1−r)−mKm((1−r)m, f)p, m ¥N. (1.2)
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We will discuss an extension of (1.2) to appropriate fractional derivatives
as well as the corresponding converse inequality (see Theorem 3.1) in
Section 3.

2. q-MODULI OF CONTINUITY

The classical modulus of continuity wm(d, f)p is given by

wm(d, f)p := sup
0 < t < d

||Dmt f(e
ij)||p, (2.1)

where

Dmt f(e
ij)=C

m

j=0
(−1) j 1m

j
2 f(e i(j+jt)).

Let us introduce a q-modulus of continuity. The divided difference of a
function f with respect to the knots zi ¥ C is given by

[z0, z1, ..., zm; f]=C
m

j=0
f(zj)D

i ] j
(zj−zi)−1. (2.2)

Choosing zj=zq j, z=e ij, q=e it, in (2.2), we define the q-difference opera-
tor Nmq by

Nmq f(z)=[z0, z1, ..., zm; f] D
m

j=1
(zj−z0) (2.3)

and, analogously to wm(d, f)p, the q-modulus of continuity w̃m(d, f)p by

w̃m(d, f)p := sup
0 < t < d

||Nmq f(e
it)||p. (2.4)

We mention the standard properties following from (2.3) (see [6, pp. 120]
for the real case and [24])

w̃m(d, f+g)p M w̃m(d, f)p+w̃m(d, g)p, (2.5)

w̃m(nd, f)p M nm−1+1/sw̃m(d, f)p, s=min(1, p), (2.6)

w̃m(d, f)p M ||f||p, w̃m(d, f)p M dm ||f (m)||p. (2.7)

Here and in the following we use the notation A M B for A [ C1B and
A % B if C1B [ A [ C2B. Positive constants in the estimates of this paper
do not depend on f and n.
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It is clear from (2.3) and (2.2) that

w̃m(d, Pm−1)p=0 for all algebraic polynomials Pm−1(z)=C
m−1

j=0
ajz j.

Let us also note that

Nmq f(z)=C
m

j=0
(−1)m−j q−j(m−(j+1)/2) 5m

j
6
q
f(zq j), (2.8)

where [mj]q is the polynomial of Gauss

5m
j
6
q
=
(1−qm)(1−qm−1)...(1−qm−j+1)
(1−q j)(1−q j−1)...(1−q)

,

and that the operator Nmq has the following recurrence property (see
[10, 23])

N0qf(z)=f(z), Nmq f(z)=q
−(m−1)Nm−1q f(zq)−Nm−1q f(z), m ¥N.

(2.9)

We want to identify w̃m with the above K-functional. To this end we
need analogs of the useful relations Dmt D

k
tf=D

m+k
t f, (Dmt f)Œ=D

m
t fŒ. For

this purpose we introduce generalized finite differences.

2.1. Generalized Finite Differences

Let f(z) be defined in points zq j, j=0, ..., m, where z, q ¥ C are arbi-
trary. We define generalized finite differences Nm, sq , m ¥N, s ¥ Z, by the
following recurrence formulas

N0, sq f(z)=f(z), Nm, sq f(z)=q
−(m−1+s)Nm−1, sq f(zq)−Nm−1, sq f(z). (2.10)

Clearly, by (2.9), Nm, 0q f(z)=Nmq f(z). Generalized divided differences Nm, sq
have some useful properties and we shall establish these properties in the
next lemma. The most interesting ones are (2.13) and (2.14).

Lemma 2.1. Let z, q ¥ C and Nm, sq be defined by (2.10). Then, for all
m ¥N, s ¥ Z, and appropriate f

(−1)m+1Nm+1, sq f(z)

= C
1

k1=0
· · · C

1

km+1=0
(−1);

m+1
j=1 kj q−;

m+1
j=1 (j−1+s) kjf(zq;

m+1
j=1 kj); (2.11)
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Nm+1, s−1q f(z)=q−(s−1)Nm, sq f(zq)−N
m, s
q f(z); (2.12)

N s, 0q Nm, sq f(z)=Nm+s, 0q f(z); (2.13)

(Nm, sq f(z))Œ=Nm, s−1q fŒ(z). (2.14)

Proof. The identities of Lemma 2.1 will be established by induction on
m. The proof of the first and the second identity is immediate. For proving
the third one we shall use (2.12). The identity (2.14) is a consequence of
(2.11). The direct calculations are given below.

For m=0 the identities (2.11)–(2.13) are obvious. Assume now that
(2.11)–(2.13) hold for m−1. We will prove that they are also true for m.

(1) Concerning (2.11) we have

Nm+1, sq f(z)=(−1)m C
1

k1=0
· · · C

1

km=0
(−1);

m
j=1 kj q−;

m
j=1 (j−1+s) kj

×{f(zq;
m
j=1 kj+1) · q−m−s−f(zq;

m
j=1 kj+0) · q (−m−s) · 0}

=(−1)m+1 C
1

k1=0
· · · C

1

km+1=0
(−1);

m+1
j=1 kj q−;

m+1
j=1 (j−1+s) kjf(zq;

m+1
j=1 kj).

(2) Analogously, from (2.10), we obtain

Nm+1, s−1q f(z)=q−(m+s−1)Nm, s−1q f(zq)−Nm, s−1q f(z)

=q−(m+s−1){q−(s−1)Nm−1, sq f(zq2)−Nm−1, sq f(zq)}

−{q−(s−1)Nm−1, sq f(zq)−Nm−1, sq f(z)}

=q−(s−1)Nm, sq f(zq)−N
m, s
q f(z),

which proves (2.12).
(3) Finally

N s, 0q Nm, sq f(z)=N s, 0q (q
−sNm−1, s+1q f(zq)−Nm−1, s+1q f(z))

=q−sN s, 0q Nm−1, s+1q f(zq)−N s, 0q Nm−1, s+1q f(z)

=N s+1, 0q Nm−1, s+1q f(z)=Nm+s, 0q f(z).

2.2. Inequality of Bernstein–Nikolskii–Stechkin

Now we shall use the properties of the generalized differences to prove
the following analog of the classical inequality.

242 KRYAKIN AND TREBELS



Theorem 2.2. For algebraic polynomials Pn of order at most n there
holds

||P (m)n ||p M n
m ||Nmq Pn ||p, q=e i/n.

Proof. For m=1 the estimate

||P −n ||p M n ||N
1
qPn ||p=n ||D

1
1/nPn ||p (2.15)

seems to be known and can be obtained by using the multiplier theorem for
Hp (see [2, 21]). By this inequality and the properties of Nm, sq we have,
using (2.13) and (2.14) repeatedly,

||P (m)n ||p M (n−m+1) ||N
1
qP
(m−1)
n ||p

=(n−m+1) ||(N1, 1q P
(m−2)
n )Œ||p

M (n−m+1)(n−m+2) ||N1, 0q N1, 1q P
(m−2)
n ||p

=(n−m+1)(n−m+2) ||N2qP
(m−2)
n ||p M · · ·

M n(n−1)...(n−m+1) ||Nmq Pn ||p M n
m ||Nmq Pn ||p.

2.3. Jackson’s Theorem in Hp

The following theorem was proved by Storozenko [22].

Theorem A. Given f ¥Hp, 0 < p <., and m ¥N, there is a polynomial
Qn of degree n ¥N such that

||f−Qn ||Hp M wm(n−1, f)p.

We shall prove the following variant.

Theorem 2.3. Let f ¥Hp, 0 < p <., and m ¥N be given. Then there is
a polynomial Rn of degree n > m such that

||f−Rn ||Hp M w̃m(n−1, f)p.

Proof. Let q=re it, 0 < r < 1, a > 0,

Kan(q)=(A
a
n)
−1 q−n

(1−q)1+a
, Aan=

1
2p

F
p

−p

q−n

(1−q)1+a
dt=1a+n

n
2 .
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Note that the functions Kan(q) are the kernels of the (C, a)-means of func-
tions which are analytic in D. With the help of these kernels write

Rn(z)=
1
2p

F
p

−p
{f(z)+(−1)m−1 Nmq f(z)} K

a
n−m+1(q) dt

=
1
2p

C
m

k=1
(−1)k−1 F

p

−p
q−k(m−(k+1)/2) 5m

k
6
q
f(zqk) Kan−m+1(q) dt.

Then Rn(z)=Rn(z; f, m, a) is independent of r and is an algebraic poly-
nomial of degree at most n. Indeed, with

f(u)=C
.

j=0
aju j, (1−u)−(1+a)=C

.

l=0
bl(a) u l, |u| < 1,

we have

f(u1)(1−u2)−(1+a)=C
.

p=0
C
l+j=p

ajbl(a) u
j
1u
l
2.

Putting u1=zqk and u2=q, we obtain

q−k(m−(k+1)/2) 5m
k
6
q
f(zqk)(1−q)−(1+a)

=C
.

p=0
C
l+j=p

ajbl(a) z jq jk+lq−k(m−(k+1)/2) 5
m
k
6
q
. (2.16)

The polynomial [mk]q=; csq s is a polynomial in q of degree at most
k(m−k). After multiplying (2.16) by q−n+m−1 and integrating it with respect
to t from −p to p there remain only such terms in the resulting double sum
that satisfy

jk+l−k(m−(k+1)/2)+s−n+m−1

=k(j−m+1)−(n−m+1)+k(k+1)/2+l+s=0.

From the last equality it follows that j [ n, so Rn(z) is a polynomial of
degree at most n.

Suppose first that 0 < p < 1. Fix m ¥N, n > m, and choose a in such a
way that

2 \ (1+a) p−(m−1) p−1 > 1 or a ¥ (2p−1+m−2, 3p−1+m−2]
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is satisfied. We prove the assertion of Theorem 2.3 with Rn(z)=
Rn(z; f, k, a). We shall use the following facts for Hp-functions. There
holds

F
p

−p
f(q)

q−n

(1−q)1+a
dt=F

p

−p
f(q) q−n 11−q

n+1

1−q
21+a dt

for n ¥N, a > 0, and

1Fp
−p
|f(q)| dt2

p

M (1−r)p−1 F
p

−p
|f(q/r)|p dt, 0 < p, r < 1. (2.17)

The first fact follows by the orthogonality of the functions qk=rke ikt. For
the second see, for example, [9, Chap. 2, Exercises]. Now, put n1=
n−m+1 and estimate

|f(e ij)−Rn(e ij)|p

[ 1 |q|−m(m−1)/2 Fp
−p
|qm(m−1)/2Nmq f(e

ij) Kan1 (q)| dt2
p

M (1−r)p−1 A−apn1 r
−p(n+m(m−1)/2) F

p

−p

:Nmq/rf(e ij) 1
1−(q/r)n1

1−q/r
21+a :p dt.

Choose r=1−n−11 . Then it follows that (1−r)p−1 % n1−p1 , A
−ap
n1 % n−ap1 , and

r−p(n+m(m−1)/2) % 1 with constants independent of n1. An integration of the
last inequality leads to

||f−Rn ||
p
p M n

1−(a+1) p
1 F

p

0
w̃pm(t, f)p :

sin(n1t/2)
sin(t/2)
: (1+a) p dt=: n1−(a+1) p1 I.

Decompose the integral I at the level 1/n1 in two integrals and apply to the
second one (2.6) to obtain

I M w̃pm 1
1
n1
, f 2

p

3n (a+1) p1 F
1/n1

0
dt+n(m−1) p+11 F

p

1/n1
t−(1+a) p+(m−1) p+1 dt4

M n (a+1) p−11 w̃pm 1
1
n1
, f 2

p
.

Summarizing, for 0 < p < 1 we have

||f−Rn ||p M w̃m 1
1
n
, f 2

p
.
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Now assume p \ 1 and choose a > m. Then, by the integral Minkowski
inequality,

||f−Rn ||p [ (A
a
n1 )
−1 F

p

−p
||Nmq/rf||p :

sin(n1t/2)
sin(t/2)
:1+a dt

M n−a1 w̃m 1
1
n1
, f 2

p

1F 1/n1
0

: sin(n1t/2)
sin(t/2)
:1+a dt+nm1 F

p

1/n1
tm−a−1dt2

M w̃m 1
1
n1
, f 2

p
M w̃m 1

1
n
, f 2

p
.

2.4. K-Functional and q-Moduli of Continuity

The equivalence of the modulus of continuity w̃m and the Km-functional
in Hp (see (2.4) and (1.1)) will now be deduced with the aid of Theorems
2.2 and 2.3.

Theorem 2.4. For f ¥Hp, 0 < p <., m ¥N, 0 < d < p, there holds

w̃m(d, f)p %Km(dm, f)p.

Proof. The inequality w̃m(d, f)p MKm(dm, f)p follows from (2.7)
(s=min{1, p})

w̃ sm(d, f)p [ w̃
s
m(d, f−g)p+w̃

s
m(d, g)p M {||f−g||

s
p+d

ms ||g (m)|| sp}.

The converse estimate

Km(dm, f)p M w̃m(d, f)p

turns out to be a consequence of Theorem 2.2 and Theorem 2.3.
For proving this, first suppose that 0 < d [ m−1 and choose n such that
n−1 < d [ (n−1)−1. With the polynomial Rn from Theorem 2.3 it follows by
Theorem 2.2 (with q=e i/n), Theorem 2.3 and (2.7) that

Km(dm, f)p [ ||f−Rn ||p+n−m ||R
(m)
n ||p

M (w̃m(n−1, f)p+||N
m
q Rn ||p)

M (w̃m(d, f)p+||N
m
q (Rn−f)||p+||N

m
q f||p)

M w̃m(d, f)p.
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But this estimate also holds for m−1 < d < p, since by (2.6)

Km(dm, f)p [Km(pm, f)p [ (pm)m Km((1/m)m, f)p

M w̃m(1/m, f)p [ w̃m(d, f)p.

This characterization of the q-modulus of continuity allows to give an
improvement of (2.6) for functions from Hp in the case 0 < p < 1.

Corollary 2.5. If f ¥Hp, 0 < p <., m, n ¥N, then for 0 [ d [ pn−1

w̃m(nd, f)p M nmw̃m(d, f)p. (2.18)

Proof. By Theorem 2.4,

w̃m(nd, f)p % inf
g(m) ¥Hp

{||f−g||p+(nd)m ||g (m)||p}

M nm inf
g(m) ¥Hp

{||f−g||p+dm ||g (m)||p} % nmw̃m(d, f)p.

Remark 2.6. A result of Oswald [17] (see also [2]) states the follow-
ing.

If f ¥Hp, 0 < p <., m ¥N, 0 < d [ p, then (see (2.1))

wm(d, f)p % inf
“
mg
“tm

¥Hp
3 ||f−g||p+dm >

“
mg
“tm
>
p

4 . (2.19)

We want to compare wm and w̃m. For this purpose we prove

Lemma 2.7. Let f (m) ¥Hp, 0 < p <., m ¥N, and fm(z)=f(z)−
;m−1
j=0 f

(j)(0) z j/j!. Then

||f (m)m ||p % >
“
mfm
“tm
>
p
. (2.20)

Proof. It is evident by the identity (“f(re it))/(“t)=izfŒ(z), z=e it, that
||“f/“t||p=||fŒ||p. Suppose now that f(0)=0, fŒ ¥Hp. By the maximal
theorem of Hardy and Littlewood [12] (see also [9]), we obtain

||f||p=>f(0)+F
1

0
fŒ(re it) e it dr>

p
[ || sup

0 < r < 1
|fŒ(re it)| ||p M ||fŒ||p=>

“f
“t
>
p
.

From this inequality we have

>“ jfm
“t j
>
p
M >“

mfm
“
mt
>
p
, j=1, ..., m−1. (2.21)
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By the identity

f (m)(z)=z−m C
m

j=1
bj
“
jf(z)
“t j

, z ] 0, bj ¥ C, j=1, ..., m

and by (2.21) we obtain

||f (m)m ||p M C
m

j=1

>“ jfm
“t j
>
p
M >“

mfm
“tm
>
p
.

The converse estimate can be deduced in the same way.

A combination of Theorem 2.4, Lemma 2.7, and (2.19) gives the follow-
ing result.

Theorem 2.8. If f ¥Hp, 0 < p <., then

w̃m(d, f)p=w̃m(d, fm)p % wm(d, fm)p, m ¥N, 0 < d < p. (2.22)

3. A HARDY–LITTLEWOOD TYPE THEOREM FOR
FRACTIONAL DERIVATIVES

Let f(z)=;.

j=0 f̂(j) z
j be an analytic function on the unit disk D. For

positive a, define fractional derivatives in sense of Riemann–Liouville by

f (a)(z)= C
.

j=[a]

C(j−[a]+1+a)
C(j−[a]+1)

f̂(j) z j−[a], (3.1)

where [a]=max{i [ a : i ¥N0}. If a=k ¥N, then f (k) is the usual deriva-
tive. This definition can be found in the work of Pekarskii [18]; it is in
particular placed in the circle of related fractional derivatives in [20,
Subsect. 23.2]. Analogously to (1.1), we define K-functionals with respect
to fractional derivatives of order a by

Ka(d, f)p= inf
g(a) ¥Hp

{||f−g||p+d ||g (a)||p}.

3.1. A Hardy–Littlewood Type Theorem

The main result of this section is the following theorem.

Theorem 3.1. Let f be an analytic function on the unit disc; let
0 < p <. and a > 0.
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(A) If f ¥Hp, then

||f (a)(re it)||p M (1−r)−a Ka((1−r)a, f)p, 0 < r < 1. (3.2)

(B) Let w(t) be a nondecreasing, continuous function on [0, 1] with
w(0)=0 and

F
d

0

w(t)
t
dt M w(d). (3.3)

Then,

||f (a)(re it)||p M (1−r)−a w(1−r), rQ 1− , (3.4)

implies

f ¥Hp and Ka(da, f)p M w(d). (3.5)

Remarks 3.2. (i) Note, that part B of Theorem 3.1 for natural a is con-
tained in [27]; there, condition (3.3) was given in an equivalent, but com-
plicated form. An elementary proof can be found in [15].

(ii) Let us mention that (3.3) is equivalent to

F
d

0
t−1wq(t) dt M wq(d), q > 0. (3.6)

To see this, denote the inequality (3.6) by Aq. Then, on the one hand, it
follows from the monotonicity of w that Aq implies Aq+e for all e > 0. On
the other hand, a multiplication of the Dini condition Aq by d−1 and an
integration with respect to d (say from 0 to d1) lead to

F
d

0
t−1wq(t) log(d/t) dt M wq(d).

Now an application of Hölder’s inequality from below (with 0 < r=
(q− e)/q < 1) shows that Aq implies Aq− e for 0 < e < q/2.

(iii) It is a well known fact that the condition wk(d, f)p=
O(da), k > a, is not sufficient for f (a) ¥Hp, p > 0. Moreover, the results of
Hardy and Littlewood [11, 13] imply that

f (a) ¥HpS w1(d, f)p=o(da), 0 < a < 1, p \ 1.

Theorem 3.1 gives the following refinement.
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Corollary 3.3. For a, p > 0 the following conditions are equivalent:

(1) f (a) ¥Hp;
(2) Ka(da, f)p=O(da).

In combination with the results in [26], which can be extended to Hp,
Corollary 3.3 contains a further characterization of well known saturation
classes in approximation theory.

Corollary 3.4. For a, p > 0 and Pn(z)=;n
k=0 akz

k we have the
following Bernstein–Nikolskii–Stechkin type inequality

||P (a)n ||p M n
aKa(n−a, Pn)p. (3.7)

This follows by Lemma C below and Theorem 3.1, part A.
The proof of Theorem 3.1 is split up into a series of lemmas.

Lemma B [13, 15]. For f ¥Hp, 0 < p <., m ¥N, there holds

||f (m)(re it)||p M (1−r)−m ||f||p, 0 < r < 1.

Lemma C. Let Pn(z)=;n
j=0 ajz

j be a polynomial and n \ 0, p > 0. Then

||Pn(e it)||p [ e ||Pn((1−1/(n+1)) e it)||p. (3.8)

Proof. This is a variant of one of the main tools in [14]. For the sake
of completeness we prove it.

In the case n=0 the inequality (3.8) is obvious. Let n \ 1. First note that
for functions F(z), analytic on {z: |z| > r0 > 0} 2 {.}, we have

1 1
2p

F
p

−p
|F(Re it)|p dt2

1/p

[ 1Fp
−p
|F(re it)|p dt2

1/p

(3.9)

provided 0 < r0 < r [ R <., 0 < p <.. Consider now the function
F1(z)=Pn(z) z−n. It is clear that F1(z) is analytic in the domain
{z: |z| > r0} 2 {.}, r0 > 0. From (3.9) it follows that

1 1
2p

F
p

−p
|Pn(e it)|p dt2

1/p

[ 1 1
2p

F
p

−p
(1−1/(n+1))−np |Pn((1−1/(n+1)) e it)|p dt2

1/p

.
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Lemma D [13]. If f ¥Hp, 0 < p <., s=min(1, p), a > 0, 0 < r < 1,
then

>F 1
r
(1−r)a−1 |f(re it)| dr>

s

p
M F

1

r
(1−r)as−1 ||f(re it)|| sp dr. (3.10)

The following variant of the definition (3.1) of a fractional derivative is
due to Flett [8]

Jaf(z)=C
.

j=0
(j+1)a f̂(j) z j, Jkf(z)=5 d

dz
z6
k

f(z) if k ¥N.

(3.11)

It has the useful semi-group property Ja+b=JaJb. It is related to the
fractional derivative f (a), given by (3.1), in the following way (for the
equivalence in (3.12) see [18, Lemma 1]),

||f (a)||p % ||Jaf[a] ||p M ||Jaf||p+ C
[a]−1

k=0
(k+1)a | f̂(k)| M ||Jaf||p, (3.12)

where

f[a](z)= C
.

k=[a]
f̂(k) zk (3.13)

since, by [7, p. 98], (k+1)a |f̂(k)|=|5Jaf(k)| M ||Jaf||p, 0 [ k [ [a]−1.
The next lemma is a consequence of Lemmas B and C.

Lemma 3.5. Let f ¥Hp, 0 < p <., a > 0. Then

||Jaf(re it)||p M (1−r)−a ||f||p, 0 < r < 1. (3.14)

Proof. First note that for natural a=m the lemma follows directly
from Lemma B. Indeed, Jmf(z)=;m

j=0 cjz
jf (j)(z) and, for s=min(1, p),

||Jmf(re it)|| sp M C
m

j=0
||f (j)(re it)|| sp M (1−r)

−ms ||f|| sp. (3.15)

Let now a ] m ¥N; set m=[a]+1 and b=m−a. Then there holds the
integral representation

Jaf(re it)=
1
C(b)

F
1

0

1 log
1
r
2b−1 Jmf(rre it) dr, 0 < r < 1, (3.16)
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which is due to Flett [8]. From the estimates (3.16), (3.15), (3.10) we
conclude that

||Jaf(re it)|| sp M F
1

0
(1−r)bs−1 ||Jmf(rre it)|| sp dr

M ||f|| sp F
1

0
(1−r)bs−1 (1−rr)−ms dr

M (1−r)−as ||f|| sp F
(1−r) −1

1
(t−1)bs−1 t−ms dt

M (1−r)−as ||f|| sp,

where we used the substitution t=(1−rr)/(1−r).

Lemma 3.6. Let a, b \ 0 and let g (b) ¥Hp. Then

||g (a+b)((1−d) e it)||p M d−a ||g (b)(e it)||p, 0 < d < 1.

Proof. By (3.12), the semi-group property of Ja and by Lemma 3.5 we
have

||g (a+b)((1−d) e it)||p M ||J (a+b)g((1−d) e it)||p M d−a ||Jbg||p.

On account of the definition of g (b) we may assume without loss of gener-
ality that g (j)(0)=0 for j=0, ..., [b]−1, hence, by (3.12), ||Jbg||p M ||g (b)||p
and the assertion is established.

Proof of Theorem 3.1. By Lemma 3.6 (b=0) it follows for arbitrary
g (a) ¥Hp that

(1−r)a ||f (a)(re it)||p M (1−r)a {||f (a)(re it)−g (a)(re it)||p+||g (a)(re it)||p}

M {||f−g||p+(1−r)a ||g (a)||p}.

Thus part (A) of Theorem 3.1 is proved.
The assertion of part (B) is immediate by the hypotheses (3.4), (3.3)

together with the following lemma.

Lemma 3.7. Let f ¥Hp, p > 0, s=min(1, p), a > 0, and 0 < d < 1/([a]
+2). Then

Ka(da, f)
s
p M F

1

1−d
(1−r)as−1 ||f (a)(re it)|| sp dr.
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Proof. By the definition of the fractional derivative we have
P (a)[a]−1(z)=0 and hence Ka(da, P[a]−1)=0. Therefore, we may assume
without loss of generality

f (j)(0)=0, j=0, ..., [a]−1. (3.17)

Let m=[a]+1. First we prove the estimate

Ka(da, f)p M w̃m(d, f)p+da ||f (a)((1−d) e it)||p. (3.18)

Choose n ¥N, n > m+1, such that (n+1)−1 < d [ n−1 and Rn from
Theorem 2.3 to obtain

Ka(da, f)p [ ||f−Rn ||p+n−a ||R
(a)
n ||p.

Now, by Lemma C,

n−a ||R (a)n ||p M n
−a ||R (a)n ((1−n

−1) e it)||p

M da(||R (a)n ((1−d) e
it)−f (a)((1−d) e it)||p+||f (a)((1−d) e it)||p).

Lemma 3.6 and Theorem 2.3 imply (3.18). Since

d sa ||f (a)((1−d) e it)|| sp M F
1

1−d
(1−r)as−1 ||f (a)(re it)|| sp dr

it is sufficient to prove that

Km(dm, f)
s
p M F

1

1−d
(1−r)as−1 ||f (a)(re it)|| sp dr.

For this purpose consider the Taylor expansion of f.

fr(z)=C
m−1

j=0

f (j)(rz)
j!

(z−rz) j, r=1−d.

It is clear that

f(z)−fr(z)=
1

(m−1)!
F
z

rz
f (m)(z)(z−z)m−1 dz.

Hence

Km((1−r)m, f)p [ ||f−fr ||p+(1−r)m ||f
(m)
r ||p

M >F z
rz
f (m)(z)(z−z)m−1 dz>

p
+C
m−1

j=0
||f (j+m)(rz)(1−r) j+m||p.
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By (3.10) we obtain

>F z
rz
f (m)(z)(z−z)m−1 dz>

s

p
M >F 1

r
|f (m)(re ij)| (1−r)m−1 dr>

s

p

M F
1

r
(1−r)ms−1 ||f (m)(re ij)|| sp dr=: Im.

Now Lemma 3.7 follows since by Lemma 3.6

Im M F
1

r
(1−r)ms−1 ((1−r)/2) s(a−m) ||f (a)((1+r)/2 e ij)|| sp dr

M F
1

r
(1−r)as−1 ||f (a)(r e ij)|| sp dr.

Remark 3.8. Lemma C and Lemma 3.5 also give the following
inequality of Bernstein-type for fractional derivatives

||JaPn ||p [ C(a, p)(n+1)a ||Pn ||p, a > 0, p > 0.

This inequality is contained in [3], where multiplier techniques are used.

3.2. Sharpness of the Converse Estimate

We would like to conclude the paper by showing that the Dini condition
(3.3) in Theorem 3.1, part B, cannot be weakened. To this end we need two
further properties of the K-functional with respect to fractional derivatives.
(The following can also be proved by multiplier techniques, see, e.g., [26].)

Lemma 3.9. Let f ¥Hp, 0 < p <., a, b > 0 and d ¥ (0, 1). Then

Ka+b(da+b, f)p MKa(da, f)p.

Proof. Let g (a) ¥Hp. Then it is clear that

Ka+b(da+b, f)p M ||f−g||p+Ka+b(da+b, g)p.

By Lemma 3.7 and Lemma 3.6 we obtain the assertion (s=min(1, p))

Ka+b(da+b, g)
s
p M F

1

1−d
(1−r) (a+b) s−1 ||g (a+b)(re it)|| sp dr

M F
1

1−d
(1−r)as−1 ||g (a)(e it)|| sp dr

M das ||g (a)|| sp.

Next we give a characterization of all K-functionals in Hp(D), p > 0.
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Let a > 0. Denote by Wa the class of all nonnegative, continuous,
bounded functions on (0,.) such that

(1) w(t)Q 0, tQ 0+;
(2) w(t) is nondecreasing;
(3) t−aw(t) is nonincreasing.

Lemma 3.10. Let a > 0 and p > 0.

(A) If w ¥Wa, then there is a function f ¥Hp such that

Ka(da, f)p % w(d). (3.19)

(B) Conversely, for any a > 0 and f ¥Hp there is some w ¥Wa such
that (3.19) is true.

Proof. Fix a, p and w ¥Wa; following Oskolkov [16] put for
i=0, 1, 2, ...

m0=[a]+1, mi+1=min 3m ¥N : max 1 w(2
−m)

w(2−mi)
,
2miaw(2−mi)
2maw(2−m)
2 [ 1
2
4 ,

and set

f(z)=C
.

k=0
w(n−1k ) z

nk, ni=2mi.

Let d ¥ [n−1i+1, n
−1
i ) and Pni (z)=; i

k=1 w(n
−1
k ) z

nk. Then

Ka(da, f)p % ||f−Pni ||p+d
a ||P (a)ni ||p.

The M-direction is obvious. For the converse we use a property of lacunary
series (see [29, p. 215]), giving

||f−Pni ||p % 1 C
.

k=i+1
w2(n−1k )2

1/2

M ||f−R||p,

where the polynomial R of degree ni+1−1 is that from Theorem 2.3. From
this and Lemma 3.9

||f−Pni ||p MKm((ni+1−1)
−1, f)p MKa(da, f)p, m=[a]+1, (3.20)
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and, by Lemma C and Theorem 3.1,

da ||P (a)ni ||p M d
a ||P (a)ni ((1−n

−1
i ) e

it)||p M da ||P
(a)
ni ((1−d) e

it)||p

MKa(da, Pni −f)+Ka(d
a, f) MKa(da, f)p.

So

Ka(da, f)p % > C
.

k=i+1
w(n−1k ) z

nk >
p
+da > C

i

k=0
nakw(n

−1
k ) z

nk >
p

% w(n−1i+1)+d
anaiw(n

−1
i ) % w(d) 3

w(n−1i+1)
w(d)

+
naiw(n

−1
i )

d−aw(d)
4 % w(d).

To prove part (B) note that Ka(da, f)p is a concave function with respect
to da and thus, by [4, Lemma 3.1.1], belongs to the classWa.

We are now able to prove that Theorem 3.1 is sharp.

Theorem 3.11. Let w ¥Wa, a > 0, and let

lim sup
dQ 0+

w−1(d) F
d

0
w(t) t−1 dt=+..

Then there is an analytic function f(z), such that

||f (a)(re ij)||p M (1−r)−a w(1−r), 0 < r < 1,

but

lim sup
dQ 0+

w−1(d) Ka(da, f)=+..

Proof. Write

f(z)=C
.

k=0
w(n−1k ) z

nk, nk=2 ik,

i0=0, ik+1=min 3 i: 2
ikaw(2−ik)
2 iaw(2−i)

[ 2−1/s4 , s=min(1, p).

We shall show that

(A) ||f (a)(re ij)||p M (1−r)−a w(1−r);

(B) w−1(n−1k ) Ka(n
−a
k , f) N 1w−2(n−1k ) C

.

j=k+1
w2(n−1j )2

1/2

, nk \ a;

(C) for some subsequence {sk} of {nk} there holds

lim
kQ.
w−1/a(s−1k ) C

nj \ sk

w1/a(n−1j )=..
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The properties (A)–(C) are sufficient to prove Theorem 3.2, since the
inequalities

C
.

j=k
a1/aj M a1/ak and C

.

j=k
a2j M a

2
k, ak a 0,

are equivalent (see Remark 3.2 (ii)).

Proof of (A). First, estimate ||f (a)(rje ij)||
s
p for rj=1−n

−1
j . To this end

note, if ck=n
as
k w

s(n−1k ), then

2−(1+as) [ ck/ck+1 [ 2−1. (3.21)

For any g(z)=;.

k=0 akz
k the following inequality is true (see (3.12))

||g (a)(z)||Hp M > C
.

k=[a]
(k+1)a akzk−[a]>

Hp

and, therefore,

||f (a)(rje ij)||
s
p M C

j−1

k=0
ck+C

.

k=j
rnkj ck M cj−1+C

.

k=j
exp 1−nk

nj
s2 ck M cj.

Now choose rj−1 < r [ rj. The relation (3.21), the monotonicity of
||f (a)(re ij)||p and of w(1−r)/(1−r)a as functions of r give

||f (a)(re ij)|| sp M ||f
(a)(rje ij)||

s
p M cj M cj−1 M (1−r)

−as w s(1−r).

The assertion (B) is already deduced in the proof of Lemma 3.10—see
(3.20).

Proof of (C). Let

lim
kQ.

3F dk
0

w1/a(t)
t
dt4 ·w−1/a(dk)=..

By making {dk} less dense if needed, we can obtain such a situation that
each interval [n−1k , n

−1
k−1) contains not more than one dk. So we may assume

that there exists a strictly increasing function h with h(k) ¥N such that
the intervals Dk :=[n

−1
h(k), n

−1
h(k)−1) contain one dk. The monotonicity of

w1/a(t) · t−1 and the choice of nk give

w1/a(d)
d
·
t

w1/a(t)
% 1, t, d ¥ Dk.
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Using the notation sk=nh(k) it is clear that w−1/a(s−1k ) \ w
−1/a(dk). There-

fore,

w−1/a(s−1k ) F
s −1k

0

w1/a(t)
t
dt

N w−1/a(dk) 1F
dk

0
−F

dk

s −1k

2 w1/a(t)
t
dt

N w−1/a(dk) F
dk

0

w1/a(t)
t
dt−(dk−s

−1
k ) w

−1/a(dk)
w1/a(dk)
dk

.

So we have

lim
kQ.
w−1/a(s−1k ) F

s −1k

0

w1/a(t)
t
dt=.,

or

lim
kQ.
w−1/a(s−1k ) C

nj \ sk

w1/a(n−1j )=..
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